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Introduction

The organization of Balkan mathematical olympiads was initiated by Prof. Di-
mitrios Kontogiannis froma Athens (Greece) and Prof. Ivan Tonov from Sofia
(Bulgaria) in a friendly chat during the 24th IMO in Paris, 1983. The first com-
petition was held in Athens in 1984. The main objective of Balkan olympiads
is to develop friendly relations among Balkan countries (Greece, Cyprus, Bulga-
ria, Romania and Yugoslavia; we hope that Albania and Turkey will soon join
the competition) and to train national teams for the International mathematical
olympiad. Let us mention that Yugoslavia participates this competition from the
fourth Olympiade.

The competition is held every year in May. Each team has six pupils
plus three leaders. Problems are selected by the international jury just before
the contest. Duration of the exam is 4,5 hours during which pupils solve four
problems. Each problem is worth 10 points, although they are not of equal
difficulty. As a rule problems are listed with incresing difficulty. Up to now there
were only two problems that were not completely solved during the competiton
(problems no. 6.2. and 6.4.).

We decided to present also some of the proposals that have not been selected
by the jury. Majority of problems in this book are published for the first time.

Let us mention that in 1989 Balkan summer school was intiated (for younger
competitors). It is held usually in some tourist resort at the coast. Every
participanting country is represented by ten students and three leaders, who are
also supposed to be lecturers. The official language is English.

In the course of past ten years there appeared many new regional competi-
tions, and this trend is certainly going to continue. Let us mention a competi-
tion among Austria and Poland, initiated by the cultural agreement between the
two states, Ibero–American competition, (South American countries and Spain),
Maghrebian competition of north–african countries, Nordic competition and since
recently Asian–Pacific competition.

The numbering of figures in this book is related to corresponding problems.

The authors are deeply indepted to Prof. Willie Yong who suggested us to
write this book. Our thanks are due to students Miroslav Šilović and Igor Dolinka,
and especially to our colleagues Željko Hanǰs and Ilko Brnetić who made many
corrections during proofreading.

Uroš Milutinović and Darko Žubrinić

c© by the authors



3

NOTATIONS

• N = {1, 2, 3, . . . }, the set of positive integers

• N0 = N ∪ {0}
• Z, Q, R sets of integers, rational and real numbers

• Euler’s function ϕ(n): the number of positive integers not greater than n and
relatively prime to n ∈ N.

• ⌊x⌋ the greatest integral part of x ∈ R (i.e. the greatest integer not excee-
ding x).

• iff ≡ if and only if

• We shall adopt the notation (a, b) for both the ordered pair and the open
interval, which will be easy to destinguish from the context. Closed intervals
will be denoted by [a, b].

• |S| =cardinality of the set S.
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1st BALKANIAN MATHEMATICAL OLYMPIAD

ATHENS, Greece, 1984

1.1. Let a1, a2, . . . , an be positive real numbers (n ≥ 2) such that a1+a2+· · ·+an =
1. Prove that

a1

1 + a2 + a3 + · · · + an

+
a2

1 + a1 + a3 + · · · + an

+ . . .

+
an

1 + a1 + a2 + · · · + an−1
≥ n

2n − 1
.

(Greece)

1.2. Let ABCD be inscribed quadrelateral and HA, HB , HC , HD intersections of
altitudes of triangles BCD, CDA, DAB and ABC respectively. Prove that
quadrelaterals ABCD and HAHBHCHD are congruent.

(Romania)

1.3. Prove that for every natural number m there exists n, n > m, such that the
decimal representation of 5n is obtained from the decimal representation of
5m by adding a certain number of digits to the left.

(Bulgaria)

1.4. Find all real solutions of the system

ax + by = (x − y)2

by + cz = (y − z)2

cz + ax = (z − x)2,

where a, b, c are given positive real numbers.
(Romania)
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2nd BALKANIAN MATHEMATICAL OLYMPIAD

SOFIA, Bulgaria, May 1985.

2.1. Let O be the circumcenter of a triangle ABC, D the midpoint of AB and
E the barycenter of the triangle ACD. Show that CD⊥OE if and only if
AB = AC.

(Bulgaria)

2.2. Let a, b, c, d ∈ [−π
2 , π

2 ] be such that

sin a + sin b + sin c + sin d = 1

and

cos 2a + cos 2b + cos 2c + cos 2d ≥ 10

3
.

Show that a, b, c, d ∈ [0, π
6 ].

(Romania)

2.3. The real points of the form 19a + 85b, where a, b ∈ N0, are coloured red,
while all the rest of the integral points of R are coloured green. Examine
whether there is a point A ∈ R such that for every pair (B, C) ∈ Z×Z with
B,C symmetrical with respect to A, the colours of B and C are different.

(Greece)

2.4. 1985 people participate a conference. In each group of three people there are
at least two speaking a common language. If each person speaks at most
five languages, show that there are at least 200 persons on this conference
speaking a common language.

(Romania)
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3rd BALKANIAN MATHEMATICAL OLYMPIAD

BUCHAREST, Romania, May 1986.

3.1. A straight line passing through the center I of the incircle of the triangle
ABC intersects its circumscribed circle in points F and G, and the incircle
in points D and E, where D lies between I and F .
Prove that DF · EG ≥ r2, where r is the radius of the incircle. When does
the equality hold?

(Greece)

3.2. Let ABCD be a thetraedron and E, F , G, H, K, L points lying on AB,
BC, CA, DA, BD DC respectively.
Prove that if AE ·BE = BF ·CF = CG·AG = DH ·AH = DK ·BK = DL·CL,
then points E, F , G, H, K, L lie on a sphere.

(Bulgaria)

3.3. The sequence a1, a2, . . . is defined by a1 = a, a2 = b and an+1 = (a2
n+c)/an−1

for n = 2, 3, . . . , where a, b, c are real numbers, such that ab 6= 0, c > 0.
Prove that an (n = 1, 2, . . . ) are integers if and only if a, b and (a2 +

b2 + c)/ab are integers.
(Bulgaria)

3.4. A triangle ABC and a point T lie in a plane, so that the triangles TAB,
TBC, TCA have the same circumference and the same area. Prove that

a) if T is in the interior of the triangle ABC, then ABC is equilateral,

b) if T is not in the interior of the triangle ABC, then ABC is rectangular.
(Romania)
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4th BALKANIAN MATHEMATICAL OLYMPIAD

ATHENS, Greece, May 1987.

4.1. Let a be a real number and f : R → R a function such that for all x, y ∈ R

f(x + y) = f(x)f(a − y) + f(y)f(a − x)

f(0) =
1

2

Prove that f is a constant function.
(former Yugoslavia)

4.2. Let x ≥ 1 and y ≥ 1 be such that

a =
√

x − 1 +
√

y − 1

b =
√

x + 1 +
√

y + 1

are nonconsecutive integers. Prove that b = a + 2 and x = y = 5
4 .

(Romania)

4.3. In a triangle ABC the following relation holds:

sin23 α

2
· cos48

β

2
= sin23 β

2
· cos48

α

2
,

where α and β are the corresponding angles at A and B. Find the ratio
AC/BC.

(Cyprus)

4.4. Two circles k1 and k2 with centers at O1 and O2 with radii 1 and
√

2 intersect
in two points A and B, and O1O2 = 2. Let AC be a chord on k2. Find the
length of AC, if the midpoint of AC lies on k1.

(Bulgaria)
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5th BALKANIAN MATHEMATICAL OLYMPIAD

NICOSIA, Cyprus, May 1988.

5.1. Let CH, CL and CM be altitude, bisector and a median of the triangle ABC
with points H, L and M lying on AB.
The ratio of areas of triangles HMC and ABC is 1

4 , while the corresponding

ratio for triangles LMC and ABC is 1 −
√

3
2 .

Determine the angles of the triangle ABC.
(Bulgaria)

5.2. Find all polynomials P (x, y) in two variables, such that

P (a, b) · P (c, d) = P (ac + bd, ad + bc)

for all real numbers a, b, c, d.
(former Yugoslavia)

5.3. Prove that every thetraedron A1A2A3A4 can be situated between two parallel
planes whose distance is not greater than 1

2

√

P/3, where

P = (A1A2)
2 + (A1A3)

2 + (A1A4)
2 + (A2A3)

2 + (A2A4)
2 + (A3A4)

2.

(Greece)

5.4. Find all pairs an, an+1 of consecutive members of the sequence a1, a2 . . . ,
defined by an = 2n + 49, so that

an = p · q, an+1 = r · s

where p, q, r, s are prime numbers such that

p < q, r < s, q − p = s − r.

(Romania)
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6th BALKANIAN MATHEMATICAL OLYMPIAD

SPLIT, former Yugoslavia, May 1989.

6.1. Let d1, d2, . . . , dk be all the divisors of a positive integer n and let 1 = d1 <
d2 < · · · < dk = n. Find all numbers n for which k ≥ 4 and

d2
1 + d2

2 + d2
3 + d2

4 = n.

(Bulgaria)

6.2. Let anan−1 . . . a1a0 = an10n + an−110n−1 + · · · + 10a1 + a0 be the decimal
representation of a prime number. Assuming that n > 1 and an > 1, show
that the polynomial

P (x) = anxn + an−1x
n−1 + · · · + a1x + a0

is irreducible, i.e. it cannot be the product of two polynomials of positive
degree and with integral coefficients.

(former Yugoslavia)

6.3. Let ABC be a triangle and let ℓ be a straight line intersecting the sides AB
and AC at the points B1 and C1 respectively, so that the vertex A and the
barycentre G of ABC lie on the same half–plane defined by the line ℓ. Show
that

Area(BB1GC1) + Area(CC1GB1) ≥
4

9
Area(ABC).

When does the equality hold?
(Greece)

6.4. We consider families F of subsets of {1, 2, . . . , n}, (n ≥ 3), such that:

(i) If A ∈ F , then |A| = 3;

(ii) If A ∈ F , B ∈ F , A 6= B, then |A ∩ B| ≤ 1.
Let f(n) be the maximum value of |F| for all such families F . Show that

1

6
(n2 − 4n) ≤ f(n) ≤ 1

6
(n2 − n),

(|S| denotes the cardinality of a set S).
(Romania)



10

7th BALKANIAN MATHEMATICAL OLYMPIAD

SOFIA, Bulgaria, May 1990.

7.1. Let a1 = 1, a2 = 3 and an+2 = (n + 3)an+1 − (n + 2)an for every integer
n ≥ 1. Find all values of n for which 11 divides an.

(Greece)

7.2. Consider the polynomial defined by

a0 + a1x + a2x
2 + · · · + a2nx2n = (1 · x + 2 · x2 + · · · + n · xn)2.

Show that

an+1 + an+2 + · · · + a2n =
n(n + 1)(5n2 + 5n + 2)

24
.

(Bulgaria)

7.3. Let A1B1C1 be the orthocentric triangle of sharp–angled, non–equilateral
triangle ABC. Let A2, B2, C2 be points where the inscribed circle to the
triangle A1B1C1 meets its sides. Prove that Euler’s lines of triangles ABC
and A2B2C2 coincide.
Remark:

(I) Vertices of orthocentric triangle are feet of heights of the given triangle.

(II) Euler’s line of the given triangle ABC is by definition determined by its
orthocenter and the center of the incircle.

(former Yugoslavia)

7.4. Find the minimal cardinality of a finite set A, for which there is a function
f : N → A such that if the number |i − j| is prime, then f(i) 6= f(j).

(Romania)
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8th BALKANIAN MATHEMATICAL OLYMPIAD

CONSTANŢA, Romania, 1991.

8.1. Let M be a point on the arc AB of the circumcircle of a tringle ABC.
The perpendicular to the radius OA drawn from M intersects the sides AB,
AC at the points K, L respectively (O is the center of the circumcircle).
Similarly, the perpendicular to the radius OB drawn from M intersects the
sides AB, BC at the point N , P respectively. If KL = MN , compute the
angle 6 MLP .

(Greece)

8.2. Prove that there are infinitely many noncongruent triangles T such that

(i) the lengths a, b, c of T are relatively prime integers;

(ii) the area of the triangle T is an integer;

(iii) no altitude of T is an integer.
(Yugoslavia)

8.3. A regular hexagon of area H is inscribed in a convex polygon of area P (all
vertices of the hexagon lye on the boundary of the polygon). Prove that
P ≤ 3

2H. When does the equality hold?
(Bulgaria)

8.4. Prove that there exists no bijection f : N → N0 such that

f(mn) = f(m) + f(n) + 3f(m)f(n)

for all m,n ≥ 1.
(Romania)
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PROPOSALS OF PROBLEMS

Combinatorics

1. Let us 3–colour the points in the plane. Prove that there are two points
at distance 1 having the same colour.

2. Let F be a collection of subsets of N, no one containing another. Let
C(F) consist of all subsets M of N with the following properties:

(i) M intersects every member of F ;

(ii) There is no proper subset M ′ of M with the property (i).

Give an example of a collection F such that C(F) is empty and 1989 belongs
to exactly 1989 members of collection F .

3. For an arbitrary polyhedron we denote by nk the number of faces with
exactly k vertices. Prove that at least one of the two following sentences is true:

(i) there exists k such that nk ≥ 3;

(ii) there exists k 6= h such that nk ≥ nh ≥ 2.

4. Let n2 distinct integers be given, each placed on a square of n × n
chessboard (n ≥ 2).

Show that it is possible to select n numbers, one from each row and column,
so that if the number selected from any row is greater than another number in
this row, then this last number is less than the number selected from its column.

Algebra

5. The sequence of functions Pn satisfies the following relations:

P1(x) = x, P2(x) = x3,

Pn+1(x) =
P 3

n(x) − Pn−1(x)

1 + Pn(x)Pn−1(x)
, n = 2, 3, . . .

Prove that all functions Pn are polynomials.

6. Solve the following system in real numbers:

2x2+y + 2x+y2

= 8√
x +

√
y = 2.

Analysis

7. Let k be a natural number and

an =
1k + 2k + · · · + nk

nk+1
, n ∈ N.
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Prove that the sequence (an) is decreasing.

8. Find all continuous functions f : R → R such that

f(x + f(y)) = f(x) + y

for every x, y ∈ R.

Geometry

9. Let ABC be a triangle and let CX and CY be two semilines (in the
semiplane determined by the line AC and containing the point B) such that CX
is parallel to AB and CX is in the interior of the angle 6 BCY .

A variable line through the point B meets CX in D and CY in E, while the
line AD meets BC in F . Show that the lines EF pass through a fixed point.

10. Let ABC be a triangle with BC = 2 ·AC − 2 ·AB, and D be a point on
the side BC. Prove that 6 ABD = 2 6 ADB if and only if BD = 3 · CD.

11. Three points A, B and C are given in the plane. Prove that C is a
midpoint of the line–segment AB if and only if

PA1989 + PB1989 ≥ 2 · PC1989

for every point P in the plane.

12. Let ABCD be a regular triangular pyramid in which the side edges AD,
BD, and CD are pairwise perpendicular. Find all points X in the interior or on
the boundary of ABCD for which the volume of the tetrahedron with vertices
the orthogonal projections of X on faces of the pyramid ABCD is maximal.

13. A convex n–gon is situated in a square with a side 1. Prove that there
are three vertices A, B, C of the given n–gon, such that the area of triangle ABC
does not exceed 8/n2.

Number theory

14. Let n ≥ 3 be a natural number. Prove that

1989 |nnn
n

− nnn

.

15. Let a0, a1, . . . , a8 be integers for which

an+1 = a2
n − an + 5, n = 0, 1, . . . , 7.

Prove that at least two of these numbers are not relatively prime.
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16. Are there 1989 positive integers a1, a2, . . . , a1989 such that for every
i = 3, 4, . . . , 1989 we have

ai + Si = (ai, Si) + [ai, Si],

where Si =
∑i

j=1 aj and (·, ·) and [·, ·] are the greatest common divisor and the
lowest common multiple respectively.

17. Find all positive integers (x, y, z, n), such that

x3 + y3 + z3 = nx2y2z2.

18. Find all integers p for which there exist rational numbers a and b, such
that the polynomial x5 − px− 1 has at least one common root with a polynomial
x2 − ax + b.
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SOLUTIONS

1.1. The inequality given in the problem is equivalent to

n
∑

k=1

ak

2 − ak

≥ n

2n − 1
.

Noting that

(1)
ak

2 − ak

= −1 +
2

2 − ak

and
n

∑

k=1

(2 − ak) = 2n − 1,

it is reasonable to introduce a new variable

xk =
2 − ak

2n − 1
> 0

for which
n

∑

k=1

xk = 1.

Then substituting (1) into the given inequality, we see that it is equivalent to

(2)
n

∑

k=1

1

xk

≥ n2.

But this is a direct consequence of the harmonic mean–arithmetic mean inequality:

(3)
n

1
x1

+ · · · + 1
xn

≤ x1 + · · · + xn

n

where xk > 0.

REMARK It is easy to prove (2) by induction. For n = 1 the statement is
trivial.

Assume that (2) is true for n − 1 and let
∑n

k=1 xk = 1. Then

n−1
∑

k=1

xk

1 − xn

= 1
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and from the inductive hypotheses we have

n−1
∑

k=1

1 − xn

xk

≥ (n − 1)2

i.e.
n

∑

k=1

1

xk

≥ (n − 1)2

1 − xn

+
1

xn

≥ n2

The last inequality is verified directly.

Note that, conversly, the inequlity (3) is almost immediate consequence of
(2).

1.2. The idea of the proof is to show that ABHAHB , BCHBHC , CDHCHD

and DAHDHA are parallelograms. From this will follow that the quadrelaterals
ABCD and HAHBHCHD are symmetric with respect to a point.

Figure 1.2.
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It suffices to show that CDHCHD is a parallelogram. First we show that the
quadrelateral AHDBHC is inscribed. Indeed, we have

6 AHDB = 6 ACB = 6 ADB = π − 6 BHCA

The second, third and fourth equality follow from the fact that the quadrelateral
A′HDCB′′ is inscribed (note that 6 CB′′HD = 6 CA′HD), as well as ABCD and
DB′HCA”. This proves that AHDBHC is inscribed.

Therefore we have

6 HDHCD = 6 BHCD + 6 BHCD

= (π − 6 BAD) + 6 BAHD

= 6 DCB + 6 BCHD = 6 DCHD

where in the second line we used the fact that the quadrelateral AD′HCB′ is
inscribed.

In a similar way we get

6 HCHDC = 6 AHDC − 6 AHDHC

= (π − 6 ABC) − 6 ABB′

= 6 ADC − 6 ADD′ = 6 HCDC

Therefore CDHCHD is a parallelogram. The degenerated case where, say,
the angles 6 ADC and 6 ABC are π/2 (and so B = HD), can be treated in a
more direct way:

6 BHCD = 6 B′HCD′ = π − 6 B′AD′ = 6 DCB

= 6 HCDC = 6 ADC − 6 ADD′ = 6 ABC − 6 ABB′ = 6 HCBC.

1.3. If n > m, then the statement in the problem is equivalent to

5m = akm
. . . a0

5n = akn
. . . akm

. . . a0,

where the right–hand sides represent the corresponding decimal representations.
This is equivalent to

(1) 5n − 5m ≡ 0 (mod 10k+1)

with k = km. It is clear that k + 1 ≤ m, because 5m = ak · 10k + . . . , ak ≥ 1.
Therefore 5n − 5m is divisible by 5k+1 for any n > m. In view of (1), it is only
left to find n, n > m, such that 5n − 5m is divisible by 2k+1, or equivalently

5n−m − 1 ≡ 0 (mod 2k+1).
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But by the Euler formula we have

5ϕ(2k+1) − 1 ≡ 0 (mod 2k+1)

(note that 5 and 2k+1 are relatively prime). So with n = m + ϕ(2k+1) we are
done.

1.4. Let us introduce new variables

s = x − y, t = y − z,

Then the system becomes

a(s + y) + by = s2

by + c(y − t) = t2

c(y − t) + a(s + y) = (s + t)2 = s2 + 2st + t2

= 2st + [a(s + y) + by] + [by + c(y − t)]

The last relation gives y = −st/b. After substituting, from the first two equations
we obtain the following system in s and t:

[ab − (a + b)t]s = s2

[−(b + c)s − bc]t = t2

We have three possibilities.

a) If s = 0, then −ct = t2 and we have either t = 0, i.e.

(x, y, z) = (0, 0, 0),

or t = −c, i.e.
(x, y, z) = (0, 0, c);

b) In a similar way, for t = 0 we obtain s = a and:

(x, y, z) = (a, 0, 0)

c) If s 6= 0 and t 6= 0, then

ab − (a + b)t = bs

−bc − (b + c)s = bt.

As a, b, c > 0, the determinant of this system is different from 0. Solving it for
instance by elimination, we get s = −b, t = b and one more solution:

(x, y, z) = (0, b, 0).
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Figure 2.1.

2.1. It is clear that
−→
OD = 1

2 (
−→
OA +

−→
OB) and

−→
OE =

1

3
(
−→
OA +

−→
OD +

−→
OC) =

1

6
(3
−→
OA +

−→
OB + 2

−→
OC).

We also have
−→
CD =

−→
OD −−→

OC =
1

2
[
−→
OA +

−→
OB − 2

−→
OC].

After a short computation, from
−→
OE · −→CD = 0 (note that OA = OB = OC) we

get
−→
OA · −→OB =

−→
OA · −→OC, i.e.

−→
OA⊥−→

BC. But this is easily seen to be equivalent to
AB = AC.

2.2. Let us introduce the following notation:

x = sin a, y = sin b, z = sin c, u = sin d.

In view of the symmetry it suffices to prove that x ∈ [0, 1
2 ]. From cos 2a = 1−2x2,

cos 2b = 1 − 2y2, cos c = 1 − 2z2 and cos 2d = 1 − 2u2 we deduce:

x + y + z + u = 1

x2 + y2 + z2 + u2 ≤ 1

3
.

Eliminating u in the inequality, after a short computation we arrive to the
following quadratic inequality in z:

z2 + (x + y − 1)z + (x2 + y2 + xy − x − y +
1

3
) ≤ 0.
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In order to have a solution z, the corresponding discriminant must be nonnegative,
that is

(x + y − 1)2 − 4(x2 + y2 + xy − x − y +
1

3
) ≥ 0.

But this yields another quadratic inequality

3y2 + 2(x − 1)y + (3x2 − 2x +
1

3
) ≤ 0

in the variable y. For the analogous reason as before, its discriminant must be
nonnegative:

4(x − 1)2 − 4[9x2 − 6x + 1] ≥ 0,

i.e.

x(x − 1

2
) ≤ 0.

From this we immediately conclude that x ∈ [0, 1
2 ].

2.3. The general solution of the Diophant equation

(1) 19x + 85y = n

is

x = 19t − 2n, y = 9n − 85t, t ∈ Z.

We shall use the fact that 1 = 9 · 19 − 2 · 85, i.e. n = 9n · 19 − 2n · 85.

The condition x, y ≥ 0 is equivalent to

2n

19
≤ t ≤ 9n

85
.

Therefore we see that the point n ≥ 0 will be coloured red if and only if the
interval

(2) [
2n

19
,
9n

85
]

contains an integer. By the way, it is clear that all negative integers are coloured
green.

We check directly that all integers ≥ 1512 are coloured red. Namely, by using

1 = 9 · 19 − 2 · 85(3)

1 = (−76) · 19 + 17 · 85(4)

we have
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1512 = 8 · 19 + 16 · 85

1513 = 17 · 19 + 14 · 85

1514 = 26 · 19 + 12 · 85

1515 = 35 · 19 + 10 · 85

1516 = 44 · 19 + 8 · 85

1517 = 53 · 19 + 6 · 85

1518 = 62 · 19 + 4 · 85

1519 = 71 · 19 + 2 · 85

1520 = 80 · 19 + 0 · 85

1511 = 4 · 19 + 17 · 85

1522 = 13 · 19 + 15 · 85

1523 = 22 · 19 + 13 · 85

1524 = 31 · 19 + 11 · 85

1525 = 40 · 19 + 9 · 85

1526 = 49 · 19 + 7 · 85

1527 = 58 · 19 + 5 · 85

1528 = 67 · 19 + 3 · 85

1529 = 76 · 19 + 1 · 85

1530 = 0 · 19 + 18 · 85

1531 = 8 · 19 + 16 · 85

and so on (note that (4) is used only at boxed numbers). In this way we see that
all integers n ≥ 1512 are red.

For n = 1511 the corresponding interval (2) is [159 1
19 , 159 84

85 ], which contains
no integer, and is therefore coloured green.

So, if there is A with the property described in the problem, then it must be
the midpoint of the interval [0, 1511], i.e. A = 755 1

2 .

It is only left to prove that for any integer n ∈ [0, 1511] the integers n and
1511 − n have different colours (they are symmetric with respect to A).

a) Let us prove that for any integer n ∈ [0, 1511] which is red, the integer
1511 − n must be green.

Suppose by contradiction that they are both red, i.e.

n = 19a + 85b

1511 − n = 19c − 85d

with a, b, c, d ≥ 0. Then we would have the integer

1511 = 19(a + c) + 85(b + d)
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coloured red, a contradiction (note that a + c, b + d ≥ 0).

b) If n is coloured green, then

2n

19
,
9n

85
∈ (k, k + 1)

for some k ∈ Z, so that

2n

19
= k +

α

19
, α ∈ {1, . . . , 18},

2n

85
= k +

β

85
, β ∈ {1, . . . , 84}.

Now we have

2(1511 − n)

19
= 159

1

19
− k − α

19
∈ (158 − k, 159 − k],

9(1511 − n)

85
= 159

84

85
− k − β

85
∈ [159 − k, 160 − k),

and from

159 − k ∈
[

2(1511 − n)

19
,
9(1511 − n)

85

]

we see that the integer 1511 − n is coloured red.

Therefore the point A = 755 1
2 has the desired properties.

2.4. Consider the following two possibilities.

a) Let any two persons speak at least one common language. The person A
speaks with the remaining 1984 people a common language, and speaks at most
five languages, so at least there is one language spoken by at least

⌊

1984

5

⌋

> 200

participants of the congress.

b) The second possibility is that there are two persons A and B who do not
speak any language in common. Then every of the remaining 1983 persons can
speak to at least one of the persons A and B (this follows from the three men
condidition). So at least 992 participants can speak with one of these two persons
(say A). This implies that A can speak the same language to at least 199 people,
because otherwise he could speak to at most 5 · 198 < 992 people. These group
together with the person A constitutes the desired 200 participants speaking the
same language.

3.1. In order to prove the inequality, note that

DF = IF − r

EG = IG − r

IF · IG = R2 − IO2,
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Figure 3.1.

where R is a radius of the circle circumscribed to the triangle ABC (the last
relation represents a well known property of the power of point I with respect to
the circle). Then

DF · EG ≥ r2

is equivalent to

FG ≤ R2 − IO2

r
.

As the line given in a problem is arbitrary, we have to prove that

2R ≤ R2 − IO2

r
,

i.e.
IO2 ≤ R(R − 2r).

But, according to the well known Euler’s formula, we have IO2 = R(R − 2r)!

The equality holds true if and only if the straight line passes through O
and I.

3.2. First describe a sphere around the tetrahedron ABCD. Its intersection
with the plane ABC is a circle kD circumscribed to the triangle ABC. Denote
its center by OD and radius by rD.

The same for the remaining three triangles (sides of ABCD).
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Figure 3.2.a)

Figure 3.2.b)
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The condition

AE · EB = BF · FC = CG · GA

means that powers of points E, F , G are the same with respect to kD. If distances
of E, F and G from OD are e, f and g respectively, then we have

(rD − e)(rD + e) = (rD − f)(rD + f) = (rD − g)(rD + g).

From this we conclude e = f = g, so that points E, F and G lie on a circle of
radius r̃D, concentric to kD. The same for the remaining three triangles.

Figure 3.2.c)

Let dE , dF , . . . be distances of points E, F . . . from the center O. Now as
OOD is perpendicular to the side ABC, we have

d2
F = r̃2

D + OO2
D = d2

E = r̃2
C + OO2

C = d2
H .

The same holds for all the other pairs of points from the problem, which means
that they lie on a sphere with a center at O.
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3.3. It is clear that an−1 6= 0 implies an+1 6= 0, so that an 6= 0 for all n.
Note first that for all n we have

a2
n + a2

n+1 + c

anan+1
=

a2
n + (

a2
n
+c

an−1
)2 + c

an
a2

n
+c

an−1

=
a2

n−1 + a2
n + c

an−1an

.

By induction we see that

a2
n + a2

n+1 + c

anan+1
=

a2 + b2 + c

ab
.

a) To prove the sufficiency of the condition in the problem, note that

an+1 =
a2

n + c

an−1

=
a2

n−1 + a2
n + c

an−1an

an − an−1

=
a2 + b2 + c

ab
an − an−1.

By induction we get that all an are in Z.

b) Conversly, assume that an ∈ Z for all n. Let

a2 + b2 + c

ab
=

p

q
,

where p ∈ Z, q ∈ N, are relatively prime. Then we have

(1) an+1 =
p

q
an − an−1, ∀n ≥ 2.

From this we see that p
q
an ∈ Z, i.e. an = qa

(1)
n , where a

(1)
n ∈ Z. From (1) we get

(2) a
(1)
n+1 =

p

q
a(1)

n − a
(1)
n−1, ∀n ≥ 3.

We have again that a
(1)
n = qa

(2)
n , i.e. an = q2a

(2)
n . Repeating this procedure, we

arrive to

an = qka(k)
n , ∀n ≥ k + 1,

Let us write shorter ak+1 = qkbk+1. Now note that

c = ak+1ak−1 − a2
k ∈ Z,
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so that
p

q
=

a2
k + a2

k+1 + c

akak+1
=

q2kb2
k+1 + q2k−2b2

k + c

q2k−1bkbk+1
.

From this it immediately follows that q2k−2 must devide c for every k, and this
is possible only for q = 1.

3.4. a) It is clear that the triangle satisfying the conditions of the problem
cannot be degenerated. Let P be the area of each of the triangles TAB, TBC,
TCA (these areas are equal). The line AT divides the side BC into two parts
of lengths a1 and a2, and the triangle BTC into two triangles of areas P1 and
P2. Denote the altitudes of triangles ABA′ and BTC, drawn from A and T
respectively, by v and v′. Then from

Figure 3.4.a1)

a1v

2
= P + P1,

a2v

2
= P + P2

we have

(1)
a1

a2
=

P + P1

P + P2
.

Also from
a1v

′

2
= P1,

a2v
′

2
= P2

we get

(2)
a1

a2
=

P1

P2
.
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Figure 3.4.a2)

Now relations (1) and (2) yield P1 = P2, i.e. a1 = a2, and in a similar way for the
remaining sides of the triangle ABC. So T must be the barycenter of the triangle
ABC.

From the condition in the problem we have

c +
2

3
(ta + tb) = a +

2

3
(tb + tc),

i.e.

c − a =
2

3
(tc − ta).

Assuming c 6= a, it is easy to see that tc 6= ta. From

(c − a)(tc + ta) =
2

3
(t2c − t2a) =

2

3

(

a2 + b2

2
− c2

4
− b2 + c2

2
+

a2

4

)

=
1

2
(a2 − c2)

we get

ta + tc = −a + c

2
,

which is impossible. So c = a and similarly a = b. Therefore, the triangle ABC
is isosceles.

b) It is clear that the point T cannot lie on the boundary of the triangle
ABC. Otherwise we would not have equality of all the areas, because of the
degeneration of some of the triangles.

Let us first show that T can be neither in sector I, nor on lines AB, AC,
BC.
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Figure 3.4.b1)

Figure 3.4.b2)

Indeed, assume by contradiction that T is in the sector I. Then the line TA
intersects the side BC in point D. Without loss of generality we can assume that
D 6= C. Now we have

P (TAC) = P (TBC) ≥ P (TDC) = P (TAC) + P (ADC) > P (TAC),

where P is the corresponding area, and this is a contradiction.
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Figure 3.4.b3)

We can therefore take that the point T lies in the sector II, say opposite to
B. Denote the intersection of lines BT and AC by D. Let x, y, z, u be lengths of
sides and P1, P2, P3, P4 areas of triangles like on the picture. Then we have

P1 + P2 = P3 + P4 = P2 + P3,

from which it follows
P1 = P3, P2 = P4.

This implies (using for instance the sine theorem) xy = uz, xu = yz. Multiplying
these relations we get x = z, y = u, i.e. ABCT is a parallelogram. But we also
have

a + c + 2y = a + c + 2x

i.e. x = y. Therefore the point B lies on the circle of the diameter AC, so that
ABC is a right–angle triangle and T is the fourth vertix of ABCT , having the
desired property.

4.1. Substituting y = 0 and then x = a into the relation, we have

f(x) = f(x)f(a) + f(0)f(a − x)(1)

f(a) = [f(a)]2 +
1

4
.

Therefore (f(a) − 1/2)2 = 0 and f(a) = 1/2. From (1) we obtain

(2) f(x) = f(a − x).

So the relation given in the problem now becomes

f(x + y) = 2f(x)f(y).
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Now we have

1

2
= f(a) = 2f(x)f(a − x) = 2[f(x)]2,

and from this f(x) = ±1/2.

If we had b such that f(b) = −1/2, then we would have

−1

2
= f(b) = f(

b

2
+

b

2
) = 2f(

b

2
)2,

which is impossible. Therefore f(x) = 1/2 for all x.

Alternate solution. Substituting x = y = 0 we obtain f(a) = 1
2 . Now

change y by 0 and next by a in the relation. Thus we get

f(x) = f(a − x), f(x) = f(a + x)

and for any real x it follows

f(−x) = f(a − (−x)) = f(a + x) = f(x).

Let x and y be arbitrary real numbers. Using the above together with the identity
in the problem, we have

f(x − y) = f(x)f(a + y) + f(−y)f(a − x)

= f(x)f(a − y) + f(y)f(a − x) = f(x + y)

Putting y = x into this relation we finally obtain f(2x) = f(0) = 1/2, i.e.
f(x) = 1/2 for all x.

4.2. First we have

b − a =
2√

x + 1 +
√

x − 1
+

2√
y + 1 +

√
y − 1

≥ 2.

Without loss of generality we can assume that x ≥ y. Therefore

2√
y + 1 +

√
y − 1

≥ 1.

After squaring twice the inequality 2 −√
y − 1 ≥ √

y + 1, we obtain y ≤ 5/4.

If we had b − a ≥ 3, then we would have

2√
y + 1 +

√
y − 1

≥ 3

2
,
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i.e. 4/3 −√
y − 1 ≥ √

y + 1, and after squaring

8

3

√

y − 1 +
2

9
≤ 0,

which is impossible.

So we have b − a = 2. Denote

x + y = s

xy = p.

Then

a2 = x − 1 + y − 1 + 2
√

xy − x − y + 1

b2 = a2 + 4a + 4 = x + 1 + y + 1 + 2
√

xy + x + y + 1.

i.e.

a2 + 2 − s = 2
√

p − s + 1 ≥ 0

a2 + 4a + 2 − s = 2
√

p + s + 1

and from this after squaring and substracting both relations we obtain

a3 + 2a2 + 2a = (a + 1)s ≤ (a + 1)(a2 + 2).

Finally, we obtain a2 ≤ 1, that is a = 1, and from this s = 5/2, p = 25/16,
x = y = 5/4.

REMARK We can obtain b = a + 2 more directly by noting that the obvious
inequality √

t + 1 +
√

t − 1 ≥
√

2, ∀t ≥ 1

implies

0 < b − a =
2√

x + 1 +
√

x − 1
+

2√
y + 1 +

√
y − 1

≤ 2
√

2.

4.3. For every s and t such that 0 < s < t < π/2, we have sin23 s < sin23 t
and cos48 s > cos48 t. Therefore the function

f(t) =
sin23 t

cos48 t

is strictly increasing on (0, π/2). So from f(α/2) = f(β/2) we get α = β, that is
AC/BC = 1.
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Figure 4.4.

4.4. Let M be the midpoint of AC and AM = x, 6 AMO1 = ϕ. As the angle
6 AMO2 is equal to π/2, we have MO2 =

√
2 − x2. From the cosine theorem for

triangle △O1O2M we get:

sin ϕ = − cos(
π

2
+ ϕ) =

1 + x2

2
√

2 − x2
.

As the triangle AMO1 is isosceles, we also have cos ϕ = x
2 , i.e. sin ϕ =

√

1 − x2/4
(note that 0 < ϕ < π/2). Introduce a new variable t = x2, 0 < t < 2. The unique
solution of

1 + t

2
√

2 − t
=

√

1 − t

4

is t = 7/8. Therefore x =
√

t =
√

7/8 and

AC = 2x =

√

7

2
.

5.1. Let AB = c, AC = b and BC = a. Without loss of generality we may
assume that 0 < b < a, so that the points H and L lie on the segment AM . From
the conditions of the problem we have
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Figure 5.1.

P (HMC)

P (ABC)
=

HM · HC

AB · HC
=

HM

AB
=

1

4

P (LMC)

P (ABC)
=

LM · HC

AB · HC
=

LM

AB
= 1 −

√
3

2
.

It is well known that for bisectors we have the following relation:

AL

b
=

c − AL

a
,

so that

AL =
bc

a + b
.

Therefore

LM =
c

2
− AL =

c(a − b)

2(a + b)
.

As LM/c = 1 −
√

3/2, we obtain that a =
√

3 b. On the other hand, from the
cosine theorem

a2 = b2 + c2 − 2bc cos α = b2 + c2 − 2c · AH

follows

HM =
c

2
− AH =

a2 − b2

2c
=

b2

c
,
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and from this
1

4
=

HM

c
=

b2

c2
,

i.e. c = 2b. Therefore α = 60deg , β = 30 deg , γ = 90 deg .

Alternate solution.

1. From AH = HM we obtain 6 HMC = α, and from this CM = AC = b.

2. As LM = (1 −
√

3/2)c, we have LB = 3−
√

3
2 c and from AL : LB = b : a

we deduce
a =

√
3 b.

3. Now HB = HM + MB = 3HM = 3AC cos α and HB2 + HC2 = BC2,
so that 9 cos2 α + sin2 α = 3, i.e. cos α = 1/2 (cos α cannot be negative). Hence
α = 60deg .

4. We conclude that AM = MC = MB, and therefore M is the center of
the circumscribed circle, i.e. γ = 90 deg .

5.2. First we note that

P (tx, ty) = P (t, 0)P (x, y)(1)

P (ts, 0) = P (t, 0)P (s, 0)(2)

Define p(x) = P (x, 0) = akxk + · · · + a0. From (2) one gets easily (comparing
coefficients on both sides) that either p(x) = 0, or p(x) = 1, or p(x) = xk with
k ≥ 1, for all x.

Therefore, either P (x, y) = 0, or P (x, y) = 1, or

(3) P (tx, ty) = tkP (x, y)

Consider (3):

P (x, y)P (1, 1) = P (x + y, x + y) = (x + y)kP (1, 1)

P (x, y)P (1,−1) = P (x − y, x − y) = (x − y)kP (1,−1).

Now we have three cases:

a) If P (1, 1) 6= 0, then P (x, y) = (x + y)k, which is easily verified to satisfy the
condition of the problem.

b) If P (1,−1) 6= 0, then P (x, y) = (x− y)k, which also satisfyes the condition in
the problem.

c) Assume that P (1, 1) = P (1,−1) = 0. Keeping y fixed, and dividing P (x, y)
by x2 − y2 we obtain

P (x, y) = (x2 − y2)Q(x, y) + xR(y) + S(y),
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for all x, y ∈ R. Substituting (x, y) = (t, t) and (x, y) = (t,−t) and using (3)
we obtain

tR(t) + S(t) = 0

−tR(t) + S(t) = 0,

from which we obtain R(t) = S(t) = 0 for all t. Therefore

P (x, y) = (x2 − y2)Q(x, y)

in this case.

The polynomial Q also satisfies the condition in the problem like P , and its
degree is equal to k − 2. So, we can again repeat the whole procedure with three
possible cases for Q, instead of P . After finitely many steps we arrive to

(4) P (x, y) = (x + y)m(x − y)n,

where m,n ≥ 0 are integers. Therefore all solutions of the problem are constants
0, 1 and polynomials given by (4).

REMARK Let us state the problem analogous to the preceding one: Find all
polynomials P (x, y, z) in three variables, such that

P (a, b, c) · P (x, y, z) = P (ax + bz + cy, ay + bx + cz, az + by + cx)

for all real numbers a, b, c, x, y, z. It can be shown that all solutions are either
constants 0 and 1, or

P (x, y, z) = (x + y + z)m(x2 + y2 + z2 − xy − yz − zx)n,

where m, n ≥ 0 are integers. Try to prove this!

5.3. Denote a1 = A1A2, a2 = A3A4, a3 = A1A4, a4 = A2A3, a5 = A2A4,
a6 = A1A3.

Let M1, M2, M3, M4 be midpoints of edges indicated on the diagram.These
are the vertices of a parallelogram.

Analogously, we have two more midpoints M5 and M6 and the corresponding
parallelograms.

The opposite edges of the tetrahedron define nonparallel lines. Denote the
smallest distance of these three pairs of nonparallel lines by d. It is clear that the
pair of lines with minimal distance defines two parallel planes containing them
and the whole tetrahedron is in between. Therefore

d ≤ M1M2

d ≤ M3M4

d ≤ M5M6.
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Figure 5.3.

Using the parallelogram equality we obtain

3d2 ≤ |M1M2|2 + |M3M4|2 + |M5M6|2

=
1

2
(|M1M2|2 + |M3M4|2) +

1

2
(|M1M2|2 + |M5M6|2)

+
1

2
(|M3M4|2 + |M5M6|2)

=
1

4
[(a2

5 + a2
6) + (a2

3 + a2
4) + (a2

1 + a2
2)] =

P

4
,

i.e. d ≤ 1
2

√

P/3.

Alternate solution. The opposite edges of the tethraedhron define two
parallel planes containg them. These six plains define a parallelepiped. Denote
lengths of its edges by a, b, c, and let d be the smallest of distances between three
pairs of parallel planes introduced above. Then by the parallelogram identity the
sum of squares of opposite edges is equal to

2a2 + 2c2, 2a2 + 2b2, 2b2 + 2c2.
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From this we have

P = 4(a2 + b2 + c2) ≥ 4(d2 + d2 + d2) = 12d2.

5.4. We shall prove that the single pair of consecutive terms which verifies
the given condition is (a7, a8).

Let us put q − p = s − r = x. Then we have

an = p(p + x), an+1 = r(r + x).

The function p 7→ p(p+x) is increasing, therefore p < r. For every odd n = 2k+1
we have

an = 2n + 49 ≡ 2n + 1 = 2(3 + 1)k + 1 ≡ 0 (mod 3)

and 2n + 49 is obviously odd. So, p = 3.

We have

(1) an+1 = 2an − 49 < 2an,

which implies r < 2p. Indeed, if r ≥ 2p, then

an+1 = r(r + x) ≥ 2p(2p + x) > 2p(p + x) = 2an.

Hence 3 < r < 6 and therefore r = 5. Substituting the values p = 3 and r = 6 into
the recurrence relation (1), one finds 5(5 + x) = 6(3 + x) − 49, hence x = 56. It
follows that an = 3 ·59 and an+1 = 5 ·61. One verifies directly that these numbers
are a7 = 27 + 49 and a8 = 28 + 49.

Alternate solution. Denote y = s− q = r−p. Like in the previous solution
we get

an = 3q, an+1 = (3 + y)(q + y).

Therefore (3 + y)(q + y) = 2n+1 + 49 = 2n + 3q, i.e.

(1) y

(

2n + 49

3
+ y + 3

)

= 2n.

If y ≥ 3, then the left hand side of (1) is bigger than the right hand side, which
is impossible. Also in case y = 1 we have a contradiction: an+1 = 4(q + 1). So
the only possibility left is y = 2. Now from (1) we compute n = 7 and the result
follows easily.

6.1. If d2 > 2, then n, d2, d3 and d4 are odd. So d2
1 + d2

2 + d2
3 + d2

4 is even,
which is a contradiction. Therefore d2 = 2, n is even and from the equality
n = 12 +22 +d2

3 +d2
4 we obtain that exactly one of the numbers d3 and d4 is even.
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a) Let d3 be even, i.e. d3 = 2a, a ≥ 1. Then a < d3 is a divisor of n and hence
a = d1 = 1, or a = d2 = 2. It is easy to check that both cases are impossible.

b) If d4 is even, d4 = 2a, a ≥ 1, a similar reasoning shows that a = 1, a = 2
or a = d3. The case a = 1 leads to a contradicition. If a = 2, then d4 = 4, so
that d3 = 3. Therefore n = 12 + 22 + 32 + 42 = 30, which is not divisible by four.

Now it suffices to consider the case a = d3. We have d4 = 2d3, and then

n = 12 + 22 + d2
3 + (2d3)

2 = 5(d2
3 + 1).

Since d3 divides n, we obtain that d3 = 5, d4 = 10, n = 12 + 22 + 52 + 102 = 130.
All the divisors of 130 are 1, 2, 5, 10, 13, 26, 65, 130. Hence, n = 130 is the unique
solution.

6.2. Observe that if P (x) = 0, then |x| < 9. Indeed, if |x| ≥ 9, then:

|P (x)| = |anxn + an−1x
n−1 + · · · + a0|

≥ 2|x|n − 9(|x|n−1 + · · · + 1) =
2|x|n+1 − 11|x|n + 9

|x| − 1

>
2|x|n(|x| − 9) + 9

|x| − 1
> 0.

Suppose by contradiction that P (x) = Q(x)R(x), where Q and R are polynomials
with integer coefficients. We have

anan−1 . . . a0 = P (10) = Q(10)R(10).

By the above we have that |Q(10)| > 1 and |R(10)| > 1, which is impossible
(P (10) is prime). Namely, since Q(x) = a

∏

i<k(x − xi), a ∈ Z, then |xi| < 9 and
so |Q(10)| = |a|

∏

i<k |10 − xi| > 1.

REMARK The conclusion of the problem is valid also for the case an = 1,
but it requires a different proof (see the problem book of Pólya–Szegö).

6.3. Let us denote the corresponding areas shortly in round brackets. Define

E1 = (AB1G), E2 = (AC1G).

As G is the barycentre of ABC, the altitude of the triangle AGC1 from the
vertix G is one third of the altitude of triangle ABC1 drawn from B. Similarly
for triangles AB1C and AB1G. Therefore

(1) (ABC1) = 3E2, (AB1C) = 3E1.

Note that

(ABC1) = E1 + E2 + (BB1GC1) = 3E2

(AB1C) = E1 + E2 + (CC1GB1) = 3E1,
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Figure 6.3.

so that

(2) (BB1GC1) + (CC1GB1) = E1 + E2.

Moreover

(3)
(ABC)

(ABC1)
=

AC

AC1
,

(ABC)

(AB1C)
=

AB

AB1
.

From (1) and (3) we get

(ABC)

E2
= 3

AC

AC1
,

(ABC)

E1
= 3

AB

AB1
.

From this we have

E1 + E2

(ABC)
=

1

3

(

AC1

AC
+

AB1

AB

)

≥ 2

3

√

AC1 · AB1

AC · AB

=
2

3

√

(AB1C1)

(ABC)

≥ 2

3

√

E1 + E2

(ABC)
,
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and the desired inequality follows from (2). The equality holds if and only if
AC1/AC = AB1/AB and (AB1C1) = E1 + E2, that is if and only if the line ℓ is
parallel to BC and contains G.

6.4. For the upper bound, let F be an arbitrary family of 3–element subsets
of {1, . . . , n}, such that |A ∩ B| ≤ 1 for any A, B ∈ F . All 2–element subsets
of all elements of F must be different. Each A ∈ F contains

(

3
2

)

= 3 different
2–element subsets and all of these are required to be distinct. Therefore, since
the total number of 2–element subsets of {1, . . . , n} is

(

n
2

)

, we have

(1) 3|F| ≤
(

n

2

)

.

As F was arbitrary, it follows that

(2) f(n) ≤ 1

3

(

n

2

)

=
n2 − n

6
,

which proves the upper bound.

For the lower bound, consider the family F0 of all 3–element subsets A =
{a, b, c} of {1, . . . , n}, such that a + b + c = n, or a + b + c = 2n. Evidently, if
a + b + c1 ∈ {n, 2n} and a + b + c2 ∈ {n, 2n}, then c1 = c2 (otherwise we would
have |c1 − c2| = n, which contradicts the fact that c1, c2 ∈ {1, . . . , n}). Thus the
family F0 has the desired property, and hence f(n) ≥ |F0|. Now we estimate |F0|.

For selecting an arbitrary A = {a, b, c} ∈ F0, we have n possibilities for a,
and (for fixed a) at least n − 4 possibilities for b (since b 6= a, b 6= (n − a)/2,
b 6= (2n − s)/2, b 6= s − 2a, and 1 ≤ b ≤ n, where s = a + b + c ∈ {n, 2n}; these
conditions come from the fact that {a, b, c} must be a 3–element subset, that is
a 6= b, b 6= c and c 6= a). But in this way we select ordered triples (a, b, c) in
F0. Since a 3–element subset can be permuted in 3! = 6 ways, it follows that any
A ∈ F0 is counted exactly 6 times. By the above we obtain

6|F0| ≥ n(n − 4),

that is

f(n) ≥ |F0| ≥
n2 − 4n

6
.

This proves the lower bound and concludes the solution of the problem.

REMARK 1. We can obtain slightly better lower bound as follows. Observe
that the condition b 6= (n − a)/2 in the argument above is “effective” only for
those a, 1 ≤ a ≤ n, with a ≡ n (mod 2). Also, the condition b 6= (2n − a)/2
is “effectove” only for even a. It follows that for odd n (and fixed a) b can be
selected in at least

{

n − 2 ways, for odd a

n − 4 ways, for even a.
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Using a similar argument as in the solution above, we obtain thus

f(n) =

{

n(n−3)
6 for odd n

1
6 [n

2 (n − 2) + n
2 (n − 4)] = n(n−3)

6 for even n.

Hence, finally

f(n) ≥ n(n − 3)

6
.

Alternate solution and generalization. Let us prove the lower bound
defining again

F0 =
{

{a, b, c} ⊆ {1, 2, . . . , n} : a + b + c ∈ {n, 2n}, a 6= b 6= c 6= a
}

.

As we saw in previous solution, the set F0 has properties (i) and (ii). The idea
is to compute effectively the cardinality of this set.

It is clear that any {a, b, c} ∈ F0 defines precisely six different ordered triples
of its elements. Let us count all such ordered triples (a, b, c) from F0.

If a, b ∈ {1, . . . , n} are any two elements for which a 6= b, then c is uniquely
determined:

1) if a + b < n, then c = n − (a + b);

2) if a + b ≥ n, then c = 2n − (a + b).

From all such pairs (a, b) we shall have to exclude those, for which the
corresponding c is equal to a or b (see the definition of F0). We are led to the
following two cases:

1’) Let a + b < n. Then c = a iff 2a + b = n and c = b iff a + 2b = n;

2’) Let a + b ≥ n. Then c = a iff 2a + b = 2n and c = b iff a + 2b = 2n.

So, the desired number of ordered triples (a, b, c) will be equal to the number
of pairs which are left in the ‘square’

{

(a, b) : a, b ∈ {1, . . . , n}
}

when we remove points on ‘lines’

a = b

2a + b = n, a + 2b = n,

2a + b = 2n, a + 2b = 2n.

Let us count all such pairs (a, b). We consider the following four cases.

I. n = 2k 6≡ 0 (mod 3). From the ‘square’ having n2 = (2k)2 points we have
to remove

• 2k points on ‘line’ a = b;

• k − 1 points on ‘line’ a + 2b = n (for b = 1, . . . , k − 1) and k − 1 points on
‘line’ 2a + b = n (for a = 1, . . . , k − 1);
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• k points on ‘line’ a + 2b = 2n (for b = k, . . . , 2k − 1) and k points on ‘line’
2a + b = 2n (for a = k, . . . , 2k − 1).

We recommend you to draw the ‘square’ and ‘lines’ for, say, n = 8.

It is left to see that among points removed there are no those counted twice.
Indeed, if we had

2a + b = a + 2b = n,

then we would have a = b = n/3, a contradiction. Therefore

6|F0| = (2k)2 − 2k − 2(k − 1) − 2k = n2 − 3n + 2.

The remaining cases can be treated in a similar way, so we leave the details to
the reader.

II. n = 2k + 1 6≡ 0 (mod 3). By repeating the procedure like in I. we arrive
to

6|F0| = (2k + 1)2 − (2k + 1) − 4k = n2 − 3n + 2.

III. n = 2k ≡ 0 (mod 3). In this case we have

6|F0| = (2k)2 − (2k) − 2(k − 2) − 2(k − 1) = n2 − 3n + 6.

IV. n = 2k + 1 ≡ 0 (mod 3). Here we have

6|F0| = (2k + 1)2 − (2k + 1) − 4(k − 1) = n2 − 3n + 6.

Finally, we arrive to the following conclusion

|F0| =

{

n2−3n+2
6 , n 6≡ 0 (mod 3)

n2−3n+6
6 , n ≡ 0 (mod 3),

i.e.

|F0| =

⌊

n2 − 3n

6

⌋

+ 1.

From this it is clear that

f(n) >
n2 − 3n

6
≥ n2 − 4n

6
.

REMARK 2 It should be noted that the family F0 is not necessarily maximal, i.e.
its cardinality could be less than f(n). For instance, if n = 8, then by the above
formula |F0| = 7. On the other hand, the family

F =
{

{1, 2, 8}, {2, 3, 4}, {4, 5, 6}, {6, 7, 8},
{1, 3, 6}, {2, 5, 7}, {1, 4, 7}, {3, 5, 8}

}

satisfies the conditions (i) and (ii), and contains 8 elements.
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7.1. By direct calculation we get

a1 ≡ 1 (mod 11)

a2 ≡ 3 (mod 11)

a3 ≡ 9 (mod 11)

a4 ≡ 0 (mod 11)

a5 ≡ 10 (mod 11)

a6 ≡ 4 (mod 11)

a7 ≡ 6 (mod 11)

a8 ≡ 0 (mod 11)

a9 ≡ 1 (mod 11)

a10 ≡ 0 (mod 11)

a11 ≡ 0 (mod 11).

So from the relation in the problem we obtain that for every n ≥ 10 we have
an+2 ≡ 0 (mod 11). The answer is:

n ∈ {4, 8} ∪ {n ∈ N : n ≥ 10}.

Alternate solution. From the recurrence relation in the problem we imme-
diately see that for n ≥ 3 we have

an − an−1 = n(an−1 − an−2)

an−1 − an−2 = (n − 1)(an−2 − an−3)

...

a4 − a3 = 4(a3 − a2)

a3 − a2 = (a2 − a1)

After consecutive substitutions we arrive to:

an − an−1 = 3 · 4 . . . · n · (a2 − a1) = n!

i.e.

(1) an = an−1 + n!,

and therefore
an = 1! + 2! + 3! + · · · + n!
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Now we have

a1 = 1 a2 = 3 a3 = 9 ≡ −2

a4 ≡ −2 + 2 · 3 · 4 = 0 a5 ≡ 2 · 3 · 4 · 5 ≡ −1 a6 ≡ −1(−1) · 6 ≡ −7 ≡ 4

and in a similar way a7 ≡ 6, a8 ≡ 0, a9 ≡ 1, a10 ≡ 0. All congruences are modulo
11. As for n ≥ 11 we have n! ≡ 0, from (1) it follows that then an ≡ 0, as well
as for n = 4, 8.

7.2. Defining bi = ixi we can write:

(x + 2x2 + · · · + nxn)2 =
n

∑

i=1

bi ·
n

∑

n=1

bi =
n

∑

i=1

n
∑

j=1

bibj .

The power of the monomial bibj is equal to i+ j. Hence, instead of summing
up numbers ai, i = n+1, . . . , 2n, it suffices to sum up the products bibj , for which
x = 1 and i + j ≥ n + 1. As bibj |x=1 = ij, we can write

2n
∑

i=n+1

ai =
∑

i,j≤n
i+j>n

ij =
n

∑

i=1

n
∑

j=n−i+1

ij =

=

n
∑

i=1

i · i(2n − i + 1)

2
=

2n + 1

2

n
∑

i=1

i2 − 1

2

n
∑

i=1

i3

=
2n + 1

2
· n(n + 1)(2n + 1)

6
− 1

2

n2(n + 1)2

4

=
1

24
n(n + 1)(5n2 + 5n + 2),

where we used well known summation identities, that are easy to prove by
induction.

Alternate solution. Let us prove the claim by induction. For n = 1 it is
checked directly. Denote the polynomial introduced in the problem by fn(x) and
define

Sn = an+1 + · · · + a2n.

Suppose that the claim is valid for n. Then we have

fn+1(x) = b0 + b1x + · · · + b2n+2x
2n+2 =

= (x + · · · + nxn + (n + 1)xn+1)2 =

= (x + · · · + nxn)2 + (n + 1)2x2n+2 + 2(x + · · · + nxn)(n + 1)xn+1

= a0 + a1x + · · · + a2nx2n

+ [2(n + 1)xn+2 + . . . 2nx2n+1 + (n + 1)2x2n+2],
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Figure 7.3.

from which it follows

(1)

Sn+1 = bn+2 + · · · + b2n+2

= an+2 + · · · + a2n + 2(n + 1)(1 + · · · + n) + (n + 1)2

= (Sn − an+1) + (n + 1)3.

It is only left to determine an+1, i.e. the coefficient at xn+1 for the polynomial

fn(x) = (x + 2x2 + · · · + nxn) · (x + 2x2 + · · · + nxn).

Substituting

an+1 = 1 · n + 2 · (n − 2) · · · + n · 1 =

n
∑

i=1

i(n + 1 − i) =

= (n + 1)
n

∑

i=1

i −
n

∑

i=1

i2 = (n + 1)
n(n + 1)

2
− 1

6
n(n + 1)(2n + 1)

=
1

6
n(n + 1)(n + 2)

into (1), we obtain

Sn+1 =
1

24
(n + 1)(n + 2)[5(n + 1)2 + 5(n + 1) + 2],

which proves the statement.

7.3. a) Let us first prove that the altitudes of the triangle △ABC bisect the
angles 6 C1A1B1, 6 A1B1C1 andi 6 B1C1A1. Let H be the orthocenter of △ABC.
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It suffices to prove that 6 B1C1C = 6 A1C1C. As 6 HC1B = 6 HA1B = π/2,
the quadrelateral HC1BA1 is inscribed, so that 6 HC1A1 = 6 HBA1 = 6 B1BA1.
Similarly 6 HC1A = 6 HB1A, which implies that the quadrelateral HB1AC1 is
also inscribed, and then 6 B1C1H = 6 B1AH = 6 B1AA1. Finally 6 BB1A =
6 AA1B = π/2, so that as ABA1B1 is inscribed, we conclude

6 B1C1C = 6 B1C1H = 6 B1AA1 = 6 B1BA1 = 6 HC1A1 = 6 A1C1C,

which proves the claim a).

b) Denote by S the center of the incircle. From a) we have that H is the
center of the circle inscribed to the triangle △A1B1C1, and it is at the same time
circumscribed to the triangle △A2B2C2. The sides B1C1 and A1C1 are tangent
to this circle, so that HA2⊥B1C1 and HB2⊥A1C1. As HC1 is a bisector of
the angle 6 A2C1B2, the triangles △HA2C1 and △HB2C1 are similar. Therefore
HC1 is a ‘line’ of symmetry of A2B2, so that we have A2B2⊥HC1⊥AB and then
A2B2‖AB. Similarly B2C2‖BC and C2A2‖CA, so that the triangles △ABC and
△A2B2C2 have parallel sides. But then the Euler’s “line’s’ are parallel, and as H
is the orthocenter of △ABC and the center of the circle inscribed to △A2B2C2,
these two “line’s’ coincide.

7.4. For integers 1, 3, 6, 8, differences of any two are primes. According to
the condition in our problem, f(1), f(3), f(6), f(8) must all be mutualy different,
so that A has at least four elements.

Let us define A = {1, 2, 3, 4} and f(n) ≡ n (mod 4). From f(i) = f(j) we
conclude i ≡ j (mod 4), i.e. four divides |i−j|, so that |i−j| not prime. Therefore
the minimal cardinality of A is 4.
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8.1. Let us prove that MK = KL = MN = NP . From

6 OAB = 6 OBA =
1

2
(π − 26 ACB) =

π

2
− 6 ACB,

6 AKL = 6 BNP = 6 ACB

we obtain

(1) MK = MN = KL.

The triangles AKL and PNB are congruent (they are both conguent to ABC,
so that

(2) AK · BN = KL · PN.

The triangles AMK and MBN are congruent as well, therefore

(3) AK · BN = MK · MN.

From (1), (2) and (3) we have MK = MN = KL = NP . Therefore KN ‖PL,
and so 6 MLP = 6 MKN = 6 ACB.

8.2. Let P be the area of the triangle and s = 1
2 (a + b + c). By Heron’s

formula we have P =
√

s(s − a)(s − b)(s − c), (s − a) + (s − b) + (s − c) = s.
For any natural number k define s − a = k4, s − b = 4k2 i s − c = 4. We have
s = (k2 + 1)2 and

a = 4(k2 + 1), b = k4 + 4, c = k2(k2 + 4).

Let k be odd and k > 1. Then a and c are relatively prime, which proves (i) and
(ii). From ha = 2P/a and similarly for remaining altitudes, we get

ha =
2k3(k2 + 2)

k2 + 1
, hb =

8k3(k2 + 2)

k4 + 4
, hc =

8k(k2 + 2)

k2 + 4
.

As k4 + 4 = (k2 − 2)(k2 + 2) + 8 and k is odd, fractions by which hb and hc are
expressed cannot be canceled, while the fraction representing ha can be canceled
by 2. This proves (iii).

8.3. By convexity, the convex polygon in the probelm is contained inside
the starshaped region on the picture, whose vertices are Ai, Mi, i = 1, . . . , 6.
The convexity implies also that the area of the part of convex polygon inside
the union of congruent triangles A1M1A2 i A2M2A3, is not greater than any of
its areas (prove this!). Considering in the same way the remaining parts of the
convex polygon that are outside the regular hexagon, we conclude that the area
of the part of convex polygon outside of hexagon is not greater than the triple
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Figure 8.3.

area of the triangle with the side equal to the side of hexagon, i.e. it is not greater
than a half of the area of the regular hexagon. This proves the desired inequality.

The equality holds if and only if the vertices of the convex polygon lie on sides
of the starshaped region on the picture, i.e. if and only if the convex polygon is
a triangle (prove this!).

8.4. Supose by contradiction that such bijection does not exist. For m =
n = 1 we get f(1) + 3f(1)2 = 0, i.e. f(1) = 0. By bijectivity of f it follows
f(n) ≥ 1 for all n ≥ 2. If m,n ≥ 2, then f(mn) ≥ 1 + 1 + 3 = 5, so that f(k) ≥ 2
for every nonprime integer k. Therefore there exist different primes n1 and n3

such that f(n1) = 1, f(n3) = 3 and an integer n8 such that f(n8) = 8. Then
f(n2

3) = 3 + 3 + 3 · 3 · 3 = 33 and f(n1n8) = 1 + 8 + 3 · 1 · 8 = 33. From this we
conclude n2

3 = n1 · n8, i.e. n1 |n2
3, which is impossible, because n1 and n3 are two

different primes.

Remark. If we denote g(m) = 3f(m) + 1, the property of f is translated into
g(mn) = g(m)g(n), g : N → 3N0 + 1, hence the monoids (N, ·) and (3N0 + 1, ·)
are not isomorphic.
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Figure 1

SOLUTIONS OF PROPOSALS

1. Let the points of the plain be 3–coloured. Consider the configuration (see
Figure 1) in which all lines have a unit length.

Let A have, say, red colour. Then points B and C must be blue and green
(in some order). Therefore F must be red. Similarly G must be red. But then F
and G form a pair at distance 1 with the same colour.

2. First we shall solve a similar problem for a collection S of subsets of N×N,
no one containing another. Let S be a collection of subsets An of N×N, defined
by

An = {(p, q) : p 6= n and q ≥ n},

for each n ∈ N.

Note that if m 6= n, then Am 6⊆ An. Suppose that B intersects every An.
Then B must be infinite. If there exists n0 such that a set

{q : (n0, q) ∈ B}

is infinite, then let (n0, q) ∈ B and let B′ = B \ {(n0, q)}. If there is no such n0,
let (p, q) be arbitrary and let B′ = B \ {(p, q)}. In either case B′ still intersects
every An. This shows that C(S) must be empty.
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Figure 4

Let f : N × N → N be a bijection such that f(1990, 1989) = 1989. Let

F = {f(An) : An ∈ S}.

The collection F is our example.

3. There exist natural numbers x so that nx 6= 0; let m be the biggest and F
a face with m vertices. There are m distinct faces Fi adjecent to F . The number
vi of Fi’s vertices satisfies 3 ≤ vi ≤ m, hence there are at most (m − 2) values k
for vi.

If there exists k so that at least three faces Fi have k vertices, (i) is true.

If (i) is not true, there will be at least two distinct values k and h such that
two faces Fi have k vertices and two have h vertices; in this situation (ii) is true.

4. We shall construct the desired n numbers by repeating a phase of tempo-
rary selections. In the first phase we choose the least element in each row, and
then for each column we choose the biggest of the numbers selected (if any). If
there is one selected number in each column, we are finished, otherwise there are
columns for which some of the row selected numbers are rejected. We shall call
these rows free and we pass to the next phase.
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For any subsequent phase we choose for each free row the least element fromm
those not yet tried. If each column contains a selected number, we are finished,
otherwise we consider the biggest number in each column (if any), call rejected
rows free, and go to the next phase.

Let us note that an arbitrary row can be rejected at most n− 1 times, hence
in the worst case we can have at most n(n−1)+1 phases. Thus the construction
just described is finite.

The final selection of the n numbers has the desired property. Indeed, if
aii is the number selected in row i and aik is such that aik < aii, then in our
construction we must have a phase in which the selected number in row was aik.
However, this number was rejected during the construction by choosing at least
another number in column k bigger than aik. Hence the final selected number in
column k is bigger than aik.

5. From the recurrence relation we have

Pn+1(x) = Pn(x)
P 2

n(x) + P 2
n−1(x)

1 + Pn(x)Pn−1(x)
− Pn−1(x),

i.e.

(1)
Pn+1(x) + Pn−1(x)

Pn(x)
=

P 2
n(x) + P 2

n−1(x)

1 + Pn(x)Pn−1(x)
.

On the other hand

P 2
n(x) + P 2

n−1(x)

1 + Pn(x)Pn−1(x)
=

(

P 3
n−1(x)−Pn−2(x)

1+Pn−1(x)Pn−2(x)

)2

+ P 2
n−1(x)

1 +
P 3

n−1
(x)−Pn−2(x)

1+Pn−1(x)Pn−2(x)Pn−1(x)
=

=

(

P 3
n−1(x) − Pn−2(x)

)2
+ P 2

n−1(x)
(

1 + Pn−1(x)Pn−2(x)
)2

(

1 + Pn−1(x)Pn−2(x)
)2

+
(

P 3
n−1(x) − Pn−2(x)

)

Pn−1(x)
(

1 + Pn−1(x)Pn−2(x)
)

=

(

1 + P 4
n−1(x)

)(

P 2
n−1(x) + P 2

n−2(x)
)

(

1 + P 4
n−1(x)

)(

1 + Pn−1(x)Pn−2(x)
)

=
P 2

n−1(x) + P 2
n−2(x)

1 + Pn−1(x)Pn−2(x)
.

Thus we have

P 2
n(x) + P 2

n−1(x)

1 + Pn(x)Pn−1(x)
= · · · =

P 2
2 (x) + P 2

1 (x)

1 + P2(x)P1(x)
=

=
x6 + x2

1 + x4
= x2.
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Finally from (1) we get

Pn+1(x) + Pn−1(x) = x2Pn(x),

and our assertion follows by an easy induction.

REMARK This problem is related to the problem no. 6 from the 1988 IMO
held in Australia.

6. From the first equation we deduce

8 = 2x2+y + 2x+y2 ≥ 2
√

2x2+y · 2x+y2 ,

or equivalently
4 ≥ x2 + x + y + y2.

Since (x + y)2 ≤ 2(x2 + y2), we get further

(x + y)2 + 2(x + y) − 8 ≤ 0.

From this relation we deduce that

x + y ≤ −1 +
√

9 = 2.

On the other hand from x, y ≥ 0 and from

(
√

x +
√

y)2 ≤ 2(x + y)

it follows, using the second equation, that

x + y ≥ 2

and therefore x + y = 2.

Now after squaring the second equation and using x + y = 2 we deduce that√
xy = 1, i.e. xy = 1. This together with x + y = 2 implies x = y = 1.

7. We shall prove that an > an+1 inductively. For n = 1 the statement is
trivial.

Assume that for a given n we have an−1 > an, and let us prove that
an > an+1. Since

an =
an−1(n − 1)k+1 + nk

nk+1
>

an(n − 1)k+1 + nk

nk+1
,

we have

(∗) an

(

nk+1 − (n − 1)k+1
)

> nk.
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Since

an+1 =
annk+1 + (n + 1)k

(n + 1)k+1
,

we must show that
(

(n + 1)k+1 − nk+1
)

an > (n + 1)k.

From (∗) we conclude it is sufficient to prove

nk

nk+1 − (n − 1)k+1
≥ (n + 1)k

(n + 1)k+1 − nk+1
.

This may be written equivalently as

nk+1 − (n − 1)k+1

nk
≤ (n + 1)k+1 − nk+1

(n + 1)k
,

or as

n

(

1 −
(n − 1

n

)k+1
)

≤ (n + 1)

(

1 −
( n

n + 1

)k+1
)

,

or as

n

(

( n

n + 1

)k+1 −
(n − 1

n

)k+1
)

≤ 1 −
( n

n + 1

)k+1
,

or as
n2k+2 − (n2 − 1)k+1 ≤ nk

(

(n + 1)k+1 − nk+1
)

,

or as

(k + 1)n2k −
(

k + 1

2

)

n2k−2 + · · · ≤ nk
(

(k + 1)nk +

(

k + 1

2

)

nk−1 + . . .
)

,

which is obviously true.

8. By setting x = 0 and then y = 0 in the relation, we get

(1) f(f(y)) = y + f(0), f(x + f(0)) = f(x).

Now
f(x) = f(x + f(0)) = f(f(f(x))) = f(x) + f(0),

and hence f(0) = 0. Thus from (1) we have f(f(y)) = y. Now

f(x + y) = f
(

x + f(f(y))
)

= f(x) + f(y)

and the continuity of f implies that f(x) = ax for some a ∈ R. From the relation
in the problem we get

a(x + ay) = ax + y
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Figure 9

for all x, y ∈ R, i.e. a = ±1. Therefore

f(x) = x or f(x) = −x.

9. Let us denote by M the point where the line EF meets the line AB.
Remark that by construction M belogns to the segment AB. We shall show that
M is a fixed point, namely

(1)
MB

MA
=

BN

AB
.

where N is the point where the line CE meets the line AB.

Using Menelaus theorem in the triangle ABD, applied for the transversal
EF , we get

MB

MA
· FA

FD
· ED

EB
= 1,

ie.

(2)
MB

MA
=

FD

FA
· EB

ED
.

Since CD is parallel to AB, then we have that

△AFB ∼ △DFC, △ECD ∼ △ENB,

and therefore
FD

FA
=

CD

AB
,

EB

ED
=

BN

CD
.
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Substituting this relations in (2) we get (1).

10. Let E be a point on the line BC such that AE = AB and denote by
AH the altitude in the isosceles triangle BEA. We consider the case when E is
between B and C (if B is between E and C or AH⊥BC, the reasoning is similar).
Since

AC2 − CH2 = AB2 − BH2,

Figure 10

we have

AC2 − AB2 = CH2 − BH2 =

= (CH − BH)(CH + BH) = (CH − EH)BC =

= CE · BC.

Now the equality BC = 2AC − 2AB implies

(1) 2AB +
1

2
BC = 2CE.

a) If 6 ABD = 2 6 ADB, then 6 AEB = 2 6 ADE and the triangle ADE is isosceles,
so that AB = AE = DE. Hence (1) shows that 2DE + 1

2BC = 2CE, which is
equivalent to BD = 3CD.

b) Conversly, from BD = 3CD it follows that 2DE+ 1
2BC = 2CE, and (1) implies

AB = DE. Since AB = AE, we have AE = DE. Hence 6 ABD = 2 6 ADB.

11. a) Assume the inequality in the problem holds. If A = B, then PA ≥ PC
for each P and so A = C.
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Let A 6= B. First we shall prove that C lies on the line AB. Suppose
by contradiction that C /∈ AB and let P be a point from the perpendicular
bisector of the line–segment AB such that P and C are from different sides of
the perpendicular bisector of AC. Then PA = PB, PA < PC, so that

PA1989 + PB1989 = 2PA1989 < 2PC1989,

which is a contradiction. Therefore C lies on the line AB.

Denote by O the midpoint of the line–segment AB. Without loss of generality
we may assume that O is between B and C. Consider a point P ∈ AB on the
right of B and let PO = x, OC = c, AO = BO = a. Then by the inequality in
the problem it follows that

f(x) = (x − a)1989 + (x + a)1989 − 2(x + c)1989 ≥ 0

for all x ≥ 0. It is easy to see that f(x) is a polynomial whose free term is equal
to −2c1989. Since c ≥ 0 and f(x) ≥ 0 for all x ≥ 0, it follows that c = 0, i.e. C is
the midpoint of AB.

b) Conversly, let C be the midpoint of AB. Then

PA + PB

2
≥ PC

for every point P , and from the well known inequality

xn + yn

2
≥

(

x + y

2

)n

, ∀x, y ≥ 0

we obtain
PA1989 + PB1989

2
≥

(

PA + PB

2

)1989

≥ PC1989,

which was to be proved.

The assertion remains true if 1989 is replaced by an arbitrary natural num-
ber n.

12. Let X be an arbitrary point in ABCD. Denote by M , N , P , Q the
orthogonal projections of X on the faces BCD, CAD, ABD, ABC respectively,
and let

XM = x, XN = y, XP = z, XQ = t.

Since XM , XN and XP are pairwise perpendicular, we have

VMNPX =
1

6
xyz.
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Figure 12

It can be easily verified that

VPQMX =
1

6
xzt sin α,

where α is the angle between the line XQ and its orthogonal projection on the
plane (XPM). Since the planes (XPM) and (ACD) are parallel, α is the angle
between the altitude of the pyramid from the vertex D and one of the side faces.
We may assume that AD = BD = CD = 1. Then AB = BC = CA =

√
2 and

sin α =
√

3/3. So

VPQMX =
1

6

√
3

3
xzt, VQMNX =

1

6

√
3

3
xyt,

etc. Therefore

V (X) = VMNPQ =
1

6

(

xyz +

√
3

3
t(xy + yz + zx)

)

.
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Let x′, y′, z′ be distances from Q to the faces BCD, CAD and ABD of the
pyramid. Then

x′ = x + t sin α = x +
t√
3
,

y′ = y +
t√
3
,

z′ = z +
t√
3
.

Now we obtain

V (Q) =
1

6

(

x +
t√
3

)(

y +
t√
3

)(

z +
t√
3

)

≥ 1

6

(

xyz +

√
3

3
t(xy + yz + zx)

)

= V (X),

and equality occurs only for t = 0, i.e. for X = Q. Hence we may consider that
X lies in the triangle ABC. In this case t = 0 and

1

6
= VABCD =

1

6
(x + y + z),

i.e.

x + y + z = 1.

Since V (X) = 1
6xyz, we obtain by the arithmetic mean–geomteric mean inequality

that V (X) is maximal if x = y = z = 1
3 , i.e. when X is the barycenter of the

triangle ABC.

13. Let A1, A2, . . . , An be vertices of the n–gon, αi the angle at the vertix
Ai,

a1 = |A1A2|, a2 = |A2A3|, . . . , an = |AnA1|,

and Si the area of the triangle Ai−1AiAi+1, i = 1, 2, . . .n (A0 = An, An+1 = A1).
Then we have

2Si = ai−1ai sin αi.

Let S = min(S1, S2, . . . , Sn). We have

2S ≤ ai−1ai sin αi (i = 1, 2, . . . , n)

and

(2S)n ≤
n

∏

i=1

a2
i

n
∏

i=1

sin ai ≤
n

∏

i=1

a2
i .
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Figure 13

Using the inequality
( n

∏

i=1

ai

)
1
n

≤
∑n

i=1 ai

n
,

we obtain

2S ≤
(∑n

i=1 ai

n

)2

.

If pi and qi are lengths of the projections of ai over the sides of the square, then

ai ≤ pi + qi

i.e.
n

∑

i=1

ai ≤
n

∑

i=1

pi +

n
∑

i=1

qi ≤ 4.

Therefore

S ≤ 8

n2
.

Alternate solution. Denote by p′i and q′i the corresponding lengths of
projections of Ai−1Ai+1. Retaining the notation from the preceding solution, we
have as a direct consequence of the convexity of n–gon the following inequality:

n
∑

i=1

p′i ≤
n

∑

i=1

(pi−1 + pi) = 2

n
∑

i=1

pi ≤ 4,
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and analogously
∑n

i=1 q′i ≤ 4. Then from

(p′1 + q′1) + (p′2 + q′2) + · · · + (p′n + q′n) ≤ 8,

using the Dirichlet principle we see that there is i such that p′i + q′i ≤ 8/n. So,
for the area of the corresponding triangle we have

Si ≤
1

2
p′iq

′
i ≤

1

2
p′i(

8

n
− p′i) ≤

8

n2
.

14. Let n1 = nnn
n

− nnn

and n2 = nnn − nn. Then

n1 = nnn

(nn2 − 1).

We shall show that

(1) 3 · 24 |n2.

Observe that n2 = nn(nnn−n − 1) and nn − n is even, thus ϕ(3) |nn − n, hence

(2) 3 |n2.

If n is even, then nn |n2, thus

(3’) 2n |n2.

and 24|n2, because n ≥ 3. If n is odd, n = 2k + 1, then

nn − n = (2k + 1)
(

(2k + 1)2k − 1
)

=

= (2k + 1)
(

(4k(k + 1) + 1)k − 1
)

=

= (2k + 1)
(

(8l + 1)k − 1
)

= 8p.

Thus 8 |nn − n. Since ϕ(24) |nn − n, we have

(3”) 24 |nn2−n − 1.

From (2), (3’) and (3”) we have (1).

From (1) we obtain ϕ(32) = 6 |n2, thus

(4) 32 |n2(nn2 − 1).

Similarly ϕ(13) |n2 and ϕ(17) |n2, so that

13 |n(nn2 − 1)(5)

17 |n(nn2 − 1).(6)



62

From (4), (5) and (6) we conclude that 1989 = 32 · 13 · 17 |n1.

15. Note that if ak ≡ 0 (mod 11), then

ak+1 ≡ 02 − 0 + 5 ≡ 5 (mod 11),

ak+2 ≡ 52 − 5 + 5 ≡ 3 (mod 11),

ak+3 ≡ 32 − 3 + 5 ≡ 0 (mod 11).

Therefore it suffices to prove that at least one of the numbers

a0, a1, a2, a3, a4, a5

is divisible by 11. We can check directly that:

if a0 ≡ 1, 2, 10 (mod 11) then a3≡ 0 (mod 11),

if a0 ≡ 3, 9 (mod 11) then a1≡ 0 (mod 11),

if a0 ≡ 4, 8 (mod 11) then a5≡ 0 (mod 11),

if a0 ≡ 5, 7 (mod 11) then a2≡ 0 (mod 11),

if a0 ≡ 6 (mod 11) then a4≡ 0 (mod 11).

This completes the solution.

16. Let xi = (ai, Si) and yi = [ai, Si]. Then xiyi = aiSi (i = 3, 4, . . . , 1989)
and the given relation can be written in the form

ai + Si = xi +
aiSi

xi

,

i.e. x2
i − (ai + Si)xi + aiSi = 0. So if ai |Si, then xi = ai and the equation holds

true.

Thus we may take a1 = 1, a2 = 2 and ai = 2i−3 · 3, i ≥ 3, whereupon we
have Si = 3 · 2i−2, i = 3, 4, . . . , 1989.

17. Let x ≤ y ≤ z, n be one solution. It is obvious that z − x ≥ y − x ≥ 0
and z + x > y > 0. Hence (z − x)(z + x) ≥ y(y − x), i.e.

z2 ≥ x2 + y2 − xy =
x3 + y3

x + y
,

or

x + y ≥ x3 + y3

z2
.

Then it is easy to see that

z = nx2y2 − x3 + y3

z2
≥ nx2y2 − (x + y) > 0,
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except for x = y = 1, n = 1, 2 (in this case there is no solution to the problem).

But z2 |x3 + y3, and from the previous inequality we obtain

x3 + y3 ≥ z2 ≥ (nx2y2 − (x + y))2.

Therefore

n2x4y4 ≤ x3 + y3 + 2nx2y2(x + y) − (x + y)2

i.e.

n2x4y4 < 2nx2y2(x + y) + x3 + y3

or

nxy < 2
( 1

x
+

1

y

)

+
1

nx3
+

1

ny3
.

If x ≥ 2, then y ≥ x ≥ 2 and nxy ≥ 4. But

2
( 1

x
+

1

y

)

+
1

nx3
+

1

ny3
≤ 2

(1

2
+

1

2

)

+
1

8
+

1

8
< 3,

which is a contradiction. Hence x = 1 and we have

ny < 2 +
2

y
+

1

n
+

1

ny3
.

If y ≥ 4, then ny ≥ 4 and

2 +
2

y
+

1

n
+

1

ny3
< 2 +

2

4
+ 1 +

1

4
< 4,

which is impossible. Therefore y ≤ 3. Since z2 |x3 + y3, i.e. z2 | 1 + y3 and z ≥ y,
we have several possibilities

(i) if y = 1, then 1 + y3 = 2 and z = 1;

(ii) if y = 2, then 1 + y3 = 9 and z = 3;

(iii) if y = 3, then 1 + y3 = 28 and z does not exist.

If x = y = z = 1, then n = 3. If x = 1, y = 2, z = 3, then n = 1.

So all solutions of the problem are

(1, 1, 1, 3) (1, 2, 3, 1) (2, 1, 3, 1) (1, 3, 2, 1)

(3, 1, 2, 1) (3, 2, 1, 1) (2, 3, 1, 1).

18. Let z be a common root of x5 − px− 1 and x2 − ax + b. If z is rational,
since z5 − pz − 1 = 0, then z = ±1. Hence p = 0 or p = 2. It is easy to be seen
that p = 0 or p = 2 satisfy the condition of the problem.
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Suppose z is not rational. Then from

pz + 1 = z5 = z(az − b)2 = z(a2z2 − 2abz + b2) =

= z(a2(az − b) − 2abz + b2) = (a3 − 2ab)z2 + (b2 − a2b)z =

= (a3 − 2ab)(az − b) + (b2 − a2b)z =

= (a4 − 3a2b + b2)z + 2ab2 − a3b.

we conclude

a4 − 3a2b + b2 = p

2ab2 − a3b = 1.

We multiply the first equation by −2a and add to the second. Then

b =
2a5 − 2ap + 1

5a3
,

and substituting this in the second equation, after some computation we get

a10 + 3pa6 + 11a5 − 4p2a2 + 4pa − 1 = 0.

Since a is rational and p is an integer, we have a = ±1.

Let a = 1. Then −4p2 + 7p + 11 = 0 and p is not an integer.

Let a = −1. Then −4p2 − p − 11 = 0, and p is not an integer either.

So p = 0 and p = 2 are the only solutions.


